中国电子技术网

设为首页 网站地图 加入收藏

 

[原创] TI TIDA-01537汽车(HEV/EV)电池管理系统(BMS)参考设计

关键词:汽车电子 电池管理系统(BMS) 电源管理 锂电池 TIDA-01537

时间:2019-06-12 11:29:01       来源:中电网

TI公司的TIDA-01537是可升级的汽车HEV/EV 6个-96个锂电池监视器参考设计,基于BQ79606A-Q1,TPS65381A-Q1,TMS570LS0432,TPS57160-Q1,TCAN1042HGV-Q1,ISO7742-Q1和SN6501-Q1等器件.采用可配置电容隔离的菊花链解决方案,可监测和保护的电池数量从6个到96个,它的电池管理系统(BMS)从24V到400V.在混合动力或电动汽车(HEV/EV)中,高压的锂电池存储用于牵引和内务管理所需要的能量,在充电和放电时必需要对锂电池进行监测.本设计通过各种接口如CAN和bqStudio提供了监测锂电池电压精度和通信数据的解决方案,包括精确的电池电压测量,板上PMIC诊断,板上BQ79606A-Q1诊断,板上容性隔离,功能强大的热插拔性能以及500kpbs外部CAN通信功能.参考设计TIDA-01537主要用在HEV/EV电池管理系统和工业能量存储系统.本文介绍了参考设计TIDA-01537主要特性和系统指标,框图,电池管理系统电路图,输入功率框图和电路图,材料清单和PCB设计图.

This reference design is a small-sized cell supervisiondemonstrator design for a centralized batterymanagement system (BMS). Its configurablecapacitive isolation daisy-chain solution enablesmonitoring and protecting cells ranging from 6-seriesto 96-series, which allows its use in BMS systemsranging from 24 V to 400 V. In hybrid or electricvehicles (HEV/EVs), a high-voltage lithium-ion batterystores the energy required for traction andhousekeeping. The lithium-ion cells in the battery mustbe monitored while charging and discharging. Thisdesign provides a solution for monitoring lithium-ioncell voltages accurately and communicating the dataexternally via various interfaces such as CAN andbqStudio.

In response to the latest changes in global environmental conditions and efforts to reduce greenhousegases, there is a need to have hybrid or electric traction units, which have very low or zero emissions. In ahybrid electric vehicle (HEV) or electric vehicle (EV), high-voltage batteries are used as storage elementsto power the wheels. Onboard chargers or external DC converters are used to source the power, andhigh-voltage lithium-ion batteries are used to store that energy. DC/DC converters and motor control
inverters are used to power the wheels and other subsystems such as heating, ventilating, and airconditioning (HVAC). All of these subsystems work on high voltages.

The reliability of an electric powertrain is mainly dependent on its battery pack and inverter. DC/DCconversion and onboard charging support the structures for power transfer in a powertrain system. Thebattery cells and management systems play important roles in handling the reliability of the electricvehicle.

Mileage is one of the critical parameter in selling an electric vehicle. It can be accurately calculated byknowing the state of charge (SOC) and state of health (SOH) of your battery. Lithium-ion cells need to beclosely monitored for accurate calculation of SOC and SOH. Voltage, temperature and currentmeasurements are critical for SOC and SOH algorithms. Irrespective of type of algorithms such ascoulomb counting, impedance spectroscopy, OCV, and others, voltage and current measurements of thecells are key parameters. Based on the type of chemistry used, all lithium-ion cells have operating voltage window. Overvoltage and undervoltage of the cells are key parameters that must be monitored closelyduring charging and discharging of the battery pack. Any deviation in the specification will hamper thehealth of the cells and battery pack. If there is a deviation in monitoring the battery cell voltages, it willimpact the calculated driving range and safety of the vehicle.

Communication of battery management system integrated chips plays an important role in maintaining theintegrity of signal and communicating the data of all cells to the maincontroller. Robust communicationfrom top of the cell to the main controller is important to have the safety integrity in operation of thesystem. Battery management ICs need to have the capability to communicate down to the last cell in thestack. The communication of the system must be robust for all the dynamics of the electric vehicle. Criticalreliability parameters such as hot plug, bulk current injection, and isolation strength are considered fordaisy-chain communication while selecting a battery management integrated circuit.

The controller of the battery management system must maintain the algorithms to ensure the appropriateSOC and SOH of the battery pack. Communication must be established with external powertrain endequipment such as the inverter, DC/DC converter, onboard charger, and vehicle control units. Thisexternal communication is typically established using the CAN interface, and depending on the electricvehicle, there may be a need for more than one CAN interface.

参考设计TIDA-01537主要特性:

• Scalable cell supervision circuits from 6s to 96s
• Accurate cell voltage measurements
• Onboard PMIC diagnosis
• Onboard BQ79606A-Q1 diagnosis
• Onboard capacitive isolation
• Robust hot-plug performance
• 500 kbps external CAN communication

参考设计TIDA-01537应用:

• HEV/EV Battery Management System
• Industrial Energy Storage Systems

图1.参考设计TIDA-01537外形图

图2.参考设计TIDA-01537框图

图3.HEV/EV电池管理系统电路图
参考设计TIDA-01537主要系统指标:


图4.参考设计TIDA-01537输入功率框图

图5.参考设计TIDA-01537电路图(1)

图6.参考设计TIDA-01537电路图(2)

图7.参考设计TIDA-01537电路图(3)

图8.参考设计TIDA-01537电路图(4)

图9.参考设计TIDA-01537电路图(5)

图10.参考设计TIDA-01537电路图(6)

图11.参考设计TIDA-01537电路图(7)

图12.参考设计TIDA-01537电路图(8)

图13.参考设计TIDA-01537电路图(9)

图14.参考设计TIDA-01537电路图(10)

图15.参考设计TIDA-01537电路图(11)

图16.参考设计TIDA-01537电路图(12)

图17.参考设计TIDA-01537电路图(13)

图18.参考设计TIDA-01537电路图(14)

图19.参考设计TIDA-01537电路图(15)

图20.参考设计TIDA-01537电路图(16)

图21.参考设计TIDA-01537电路图(17)

图22.参考设计TIDA-01537电路图(18)

图23.参考设计TIDA-01537电路图(19)

图24.参考设计TIDA-01537电路图(20)

图25.参考设计TIDA-01537电路图(21)

图26.参考设计TIDA-01537电路图(22)

图27.参考设计TIDA-01537电路图(23)

图28.参考设计TIDA-01537电路图(24)

图29.参考设计TIDA-01537电路图(25)

图30.参考设计TIDA-01537电路图(26)

图31.参考设计TIDA-01537电路图(27)

图32.参考设计TIDA-01537电路图(28)

图33.参考设计TIDA-01537电路图(29)

图34.参考设计TIDA-01537电路图(30)

图35.参考设计TIDA-01537电路图(31)

图36.参考设计TIDA-01537电路图(32)

图37.参考设计TIDA-01537电路图(33)

图38.参考设计TIDA-01537电路图(34)

图39.参考设计TIDA-01537电路图(35)

图40.参考设计TIDA-01537电路图(36)

图41.参考设计TIDA-01537电路图(37)

图42.参考设计TIDA-01537电路图(38)

图43.参考设计TIDA-01537电路图(39)

图44.参考设计TIDA-01537电路图(40)

图45.参考设计TIDA-01537电路图(41)

图46.参考设计TIDA-01537电路图(42)

图47.参考设计TIDA-01537电路图(43)

图48.参考设计TIDA-01537电路图(44)

图49.参考设计TIDA-01537电路图(45)

图50.参考设计TIDA-01537电路图(46)

图51.参考设计TIDA-01537电路图(47)

图52.参考设计TIDA-01537电路图(48)

图53.参考设计TIDA-01537电路图(49)

图54.参考设计TIDA-01537电路图(50)

图55.参考设计TIDA-01537电路图(51)

图56.参考设计TIDA-01537电路图(52)

图57.参考设计TIDA-01537电路图(53)

图58.参考设计TIDA-01537电路图(54)

图59.参考设计TIDA-01537电路图(55)

图60.参考设计TIDA-01537电路图(56)

图61.参考设计TIDA-01537电路图(57)

图62.参考设计TIDA-01537电路图(58)

图63.参考设计TIDA-01537电路图(59)

图64.参考设计TIDA-01537电路图(60)

图65.参考设计TIDA-01537电路图(61)

图66.参考设计TIDA-01537电路图(62)

图67.参考设计TIDA-01537电路图(63)

图68.参考设计TIDA-01537电路图(64)

图69.参考设计TIDA-01537电路图(65)

图70.参考设计TIDA-01537电路图(66)

图71.参考设计TIDA-01537电路图(67)

图72.参考设计TIDA-01537电路图(68)

图73.参考设计TIDA-01537电路图(69)
参考设计TIDA-01537材料清单:





















图74.参考设计TIDA-01537 PCB设计图(1)

图75.参考设计TIDA-01537 PCB设计图(2)

图76.参考设计TIDA-01537 PCB设计图(3)

图77.参考设计TIDA-01537 PCB设计图(4)

图78.参考设计TIDA-01537 PCB设计图(5)

图79.参考设计TIDA-01537 PCB设计图(6)

图80.参考设计TIDA-01537 PCB设计图(7)

图81.参考设计TIDA-01537 PCB设计图(8)

图82.参考设计TIDA-01537 PCB设计图(9)

图83.参考设计TIDA-01537 PCB设计图(10)
详情请见:
http://www.ti.com/lit/ug/tidue78a/tidue78a.pdf
http://www.ti.com/lit/df/tidrxc9/tidrxc9.pdf
以及http://www.ti.com/lit/df/tidrxd0/tidrxd0.pdf
http://www.ti.com/lit/df/tidrxd2/tidrxd2.pdf
tidrxd0.pdf
tidue78a.pdf
tidrxc9.pdf
tidrxd2.pdf

  • 分享到:

 

猜你喜欢