中国电子技术网

设为首页 网站地图 加入收藏

 

[原创] TI 10KW三相三电平并网太阳能逆变器参考设计TIDA-01606

关键词:电源管理 太阳能逆变器 SiC IGBT TIDA-01606

时间:2019-04-25 11:11:46       来源:中电网

TI公司的TIDA-01606是10KW三相三电平并网太阳能逆变器参考设计,额定和最大输入电压分别是800VDC和1000VDC,在连接400-VAC 50/60-Hz电网时输出功率最大为0-kW/10-kVA,基于高压1200V SiC MOSFET全桥逆变器的效率高达98.5%,满负载时输出电流THD小于2%,采用AMC1301隔离电流检测用于负载电流检测,而TMS320F28379D控制卡用来数字控制.参考设计TIDA-01606采用了增强型隔离栅极驱动器SO5852S,栅极和功率驱动器ucc5320,32位MCU TMS320F28379D,二阶隔离型 Δ-Σ 调制器AMC1305M05,运算放大器OPA4340,DC/DC转换器LM76003,微型电源模块PTH08080W,低压稳压器TLV1117,CMOS运放OPA350以及MOSFET 驱动器UCC27211等器件.主要用在太阳能串逆变器和太阳能中心逆变器.本文介绍了10KW三相三电平并网太阳能逆变器参考设计TIDA-01606主要特性和主要指标,框图,以及双电平三相逆变器架构图,三电平T型三相逆变器架构图和参考设计中的栅极驱动器E4,HV卡E4和电源卡E4的电路图,材料清单,PCB设计图和装配图.

This reference design provides an overview on how toimplement a three-level, three-phase, SiC-basedDC/AC grid-tie inverter stage. A higher switchingfrequency of 50 kHz reduces the size of magnetics forthe filter design and as a result a higher power density.SiC MOSFETs with switching loss ensures higher DCbus voltages of up to 1000 V and lower switchinglosses with a peak efficiency of 99%. This design isconfigurable to work as a two-level or three-levelinverter.

Modern commercial scale solar inverters are seeing innovation on two fronts, which lead to smaller, higherefficiency products on the market:
1. The move to higher voltage solar arrays
2. Reducing the size of the onboard magnetic

By increasing the voltage to 1000-V or 1500-V DC from the array, the current can be reduced to maintainthe same power levels. This reduction in current results in less copper and smaller power conductingdevices required in the design. The reduction in di/dt also reduces the stress on electrical components.

However, sustained DC voltages of > 1 kV can be difficult to design to, or even find components that cansurvive it.

To compensate for the voltage stresses generated by high-voltage solar arrays, new topologies of solarinverters have been designed. Traditional half bridges block the full input voltage on each switchingdevice. By adding additional switched blocking and conduction components, the overall stress on thedevice can be significantly reduced. This reference design shows how to implement a three-levelconverter. Higher level converters are also possible, further increasing the voltage handling capability.

Additional power density in solar electronics is also being enabled by moving to higher switching speeds inthe power converters. As this design shows, even a modestly higher switching speed reduces the overallsize requirement of the output filter stage—a primary contributor to the design size.

Traditional switching devices have a limit in how quickly they can switch high voltages, or moreappropriately, the dV/dt ability of the device. This slow ramp up and down increases conduction lossbecause the device spends more time in a switching state. This increased switch time also increases theamount of dead time required in the control system to prevent shoot-through and shorts. The solution tothis has been developed in newer switching semiconductor technology like SiC and GaN devices with highelectron mobility. This reference design uses SiC MOSFETs alongside TI ’s SiC gate driver technology to demonstrate the potential increase in power density.

参考设计TIDA-01606主要特性:

• Rated Nominal and Max Input Voltage at 800-Vand 1000-V DC
• Max 10-kW/10-kVA Output Power at 400-V AC50- or 60-Hz Grid-Tie Connection
• Operating Power Factor Range From 0.7 Lag to0.7 Lead
• High-Voltage (1200-V) SiC MOSFET-Based Full-Bridge Inverter for Peak Efficiency of 98.5%
• Compact Output Filter by Switching Inverter at50 kHz
• <2% Output Current THD at Full Load
• Isolated Driver ISO5852S With Reinforced Isolationfor Driving High-Voltage SiC MOSFET andUCC5320S for Driving Middle Si IGBT
• Isolated Current Sensing Using AMC1301 for LoadCurrent Monitoring
• TMS320F28379D Control Card for Digital Control

参考设计TIDA-01606应用:

• Solar String Inverters
• Solar Central Inverters

图1.参考设计TIDA-01606外形图

图2.参考设计TIDA-01606概述图
参考设计TIDA-01606主要指标:


图3.参考设计TIDA-01606框图

图4.双电平三相逆变器架构图

图5.三电平T型三相逆变器架构图

图6.参考设计TIDA-01606栅极驱动器E4电路图(1)

图7.参考设计TIDA-01606栅极驱动器E4电路图(2)
参考设计TIDA-01606栅极驱动器E4材料清单:


图8.参考设计TIDA-01606栅极驱动器E4 PCB设计图(1)

图9.参考设计TIDA-01606栅极驱动器E4 PCB设计图(2)

图10.参考设计TIDA-01606栅极驱动器E4 PCB设计图(3)

图11.参考设计TIDA-01606栅极驱动器E4 PCB设计图(4)

图12.参考设计TIDA-01606栅极驱动器E4 PCB设计图(5)

图13.参考设计TIDA-01606栅极驱动器E4 PCB设计图(6)

图14.参考设计TIDA-01606栅极驱动器E4 PCB设计图(7)

图15.参考设计TIDA-01606栅极驱动器E4 PCB设计图(8)

图16.参考设计TIDA-01606栅极驱动器E4 PCB设计图(9)

图17.参考设计TIDA-01606栅极驱动器E4 PCB设计图(10)

图18.参考设计TIDA-01606栅极驱动器E4 PCB装配图(顶层)

图19.参考设计TIDA-01606栅极驱动器E4 PCB装配图(底层)

图20.参考设计TIDA-01606 HV卡E4 电路图
参考设计TIDA-01606 HV卡E4材料清单:


图21.参考设计TIDA-01606 HV卡E4  PCB设计图(1)

图22.参考设计TIDA-01606 HV卡E4  PCB设计图(2)

图23.参考设计TIDA-01606 HV卡E4  PCB设计图(3)

图24.参考设计TIDA-01606 HV卡E4  PCB设计图(4)

图25.参考设计TIDA-01606 HV卡E4  PCB设计图(5)

图26.参考设计TIDA-01606 HV卡E4  PCB设计图(6)

图27.参考设计TIDA-01606 HV卡E4  PCB设计图(7)

图28.参考设计TIDA-01606 HV卡E4  PCB设计图(8)

图29.参考设计TIDA-01606 HV卡E4  PCB设计图(9)

图30.参考设计TIDA-01606 HV卡E4  PCB设计图(10)

图31.参考设计TIDA-01606 HV卡E4  PCB装配图(顶层)

图32.参考设计TIDA-01606 HV卡E4  PCB装配图(底层)

图33.参考设计TIDA-01606电源卡E4电路(1)

图34.参考设计TIDA-01606电源卡E4电路(2)

图35.参考设计TIDA-01606电源卡E4电路(3)

图36.参考设计TIDA-01606电源卡E4电路(4)

图37.参考设计TIDA-01606电源卡E4电路(5)

图38.参考设计TIDA-01606电源卡E4电路(6)
参考设计TIDA-01606电源卡E4材料清单:


图39.参考设计TIDA-01606电源卡E4 PCB设计图(1)

图40.参考设计TIDA-01606电源卡E4 PCB设计图(2)

图41.参考设计TIDA-01606电源卡E4 PCB设计图(3)

图42.参考设计TIDA-01606电源卡E4 PCB设计图(4)

图43.参考设计TIDA-01606电源卡E4 PCB设计图(5)

图44.参考设计TIDA-01606电源卡E4 PCB设计图(6)

图45.参考设计TIDA-01606电源卡E4 PCB设计图(7)

图46.参考设计TIDA-01606电源卡E4 PCB设计图(8)

图47.参考设计TIDA-01606电源卡E4 PCB设计图(9)

图48.参考设计TIDA-01606电源卡E4 PCB设计图(10)

图49.参考设计TIDA-01606电源卡E4 PCB装配图(正面)

图50.参考设计TIDA-01606电源卡E4 PCB装配图(背面)
详情请见:
http://www.ti.com/lit/ds/symlink/ucc21750.pdf
http://www.ti.com/lit/ug/tidue53a/tidue53a.pdf
ucc21750.pdf
tidue53a.pdf

  • 分享到:

 

猜你喜欢